推荐商品
  • Pba 淘宝网最热美容护肤品牌
  • 每一秒都在燃烧你的脂肪 健康瘦身
  • 健康绿色减肥 就是这样轻松!
  • 时尚内衣 塑造完美身形!
  • 麦包包 周年庆典包包折扣
  • 祛斑美白 不再做个灰脸婆
BF正版 挑战思维极限-勾股定理的365种证明 李迈新 清华大学出版社
  • 市场价格:34
  • 促销价格:34
  • 商品编码:577572753362
  • 商品分类:勾股定理的证明
  • 商品所在地:北京
  • 商品来源:天猫
  • 发布时间:2018-09-23 16:32:49
商品详细信息 -

BF正版 挑战思维极限-勾股定理的365种证明 李迈新 清华大学出版社

基本信息

书名:挑战思维极限-勾股定理的365种证明

定价:39.8元

作者:李迈新

出版社:清华大学出版社

出版日期:2016-12-01

ISBN:9787302458791

字数:

页码:

版次:

装帧:平装-胶订

开本:32开

商品重量:

暂无相关内容

目录


第1 章分块法......................................................................................1

1.1 分块对应法.............................................................................2

1.2 镶嵌法....................................................................................8

1.3 十字分块法............................................................................12

第2 章割补法.....................................................................................17

第3 章搭桥法.....................................................................................23

第4 章“化积为方”法.........................................................................38

第5 章等积变换法..............................................................................45

第6 章拼摆法.....................................................................................57

第7 章增积法.....................................................................................78

第8 章消去法.....................................................................................95

8.1 倍积法...................................................................................95

8.2 面积比例法..........................................................................102

第9 章同积法...................................................................................111

第10 章射影法.................................................................................131

10.1 作斜边垂线的证法..............................................................131

10.2 作直角边垂线的证法...........................................................139

第11 章长度法.................................................................................142

第12 章方程法.................................................................................152

第13 章平方差法..............................................................................157

第14 章辅助圆法..............................................................................163

第15 章相似转化法..........................................................................172

第16 章间接证法..............................................................................177

16.1 反证法...............................................................................177

16.2 同一法...............................................................................178

第17 章解析法.................................................................................183

17.1 坐标法...............................................................................183

17.2 参数法...............................................................................191

17.3 三角函数法........................................................................193

第18 章特例法.................................................................................198

第19 章泛化法.................................................................................208

附录A 证法出处汇总.........................................................................232

附录B 勾股定理的365 种证明有用吗?..............................................243

参考文献..............................................................................................246

后记.....................................................................................................247

暂无相关内容暂无相关内容暂无相关内容

相关商品
友情链接: